
django-signal-notifier Documentation
Release 0.2.1

Mohammad Hadi Azaddel

Mar 21, 2021

CONTENTS

1 Table of Contents 3
1.1 Quick Start . 3
1.2 Introduction . 5
1.3 Setup . 7
1.4 Usage . 8
1.5 Backends . 9
1.6 Dynamic User . 11
1.7 Background Tasks . 12
1.8 Settings . 12
1.9 Comparison with similar projects . 13

2 Indices and tables 15

i

ii

django-signal-notifier Documentation, Release 0.2.1

DSN or django-signal-notifier is a Django app to send message or notification based on the Django’s signals triggering.
You can assign some backends to each signal(e.g. An In-Site notification app).

The major difference between django-signal-notifier and other Django’s notification packages is that DSN
isn’t just a simple message delivering system. It can act as a middleware between Django and every messenger client
(Various clients like email, telegram, SMS and twitter).

It’s working with event methodology, and it’s based on Django signal. If a signal triggers, A messenger is called to
send a message for specified users. To understand how it works, We explain some main concepts at first.

Attention: django-signal-notifier==0.2.1 is not compatible with django>=3.1 . We are solving the problem.

CONTENTS 1

https://github.com/hadi2f244/django-signal-notifier
https://docs.djangoproject.com/en/3.0/topics/signals/

django-signal-notifier Documentation, Release 0.2.1

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Quick Start

DSN or django-signal-notifier is a Django package to send message or notification based on the Django’s signals
triggering. You can select some backends for each signal(e.g., An In-Site notification app).

Attention: django-signal-notifier==0.2.1 is not compatible with django>=3.1 . We are solving the problem.

1.1.1 Concepts (Summary version)

DSN’s architecture :

In a nutshell, we can say DSN is developed to send message :

• When and Where ? : When a Trigger Triggered (The associated signal’s send function is called, and the
trigger’s specs match).

• What to send?: The message that is created to the message_template and other parameters like signal_kwargs.

• Whom to send? : Send the message to the registered receivers in the subscription or the dynamic user that can
be specified in the messenger.

3

https://github.com/hadi2f244/django-signal-notifier

django-signal-notifier Documentation, Release 0.2.1

Note: You should pay attention to these 3 questions when you want to assign a new trigger to a signal.

1.1.2 Setup

Requirements

• Python 2.7, 3.4, 3.5, 3.6, 3.7

• Django 1.7, 1.8, 1.9, 1.10, 1.11, 2.0, 2.1, 2.2, 3.0

Attention: django-signal-notifier==0.2.1 is not compatible with django>=3.1 . We are solving the problem.

Installation

1. Install django-signal-notifier by pip:

$ pip install django-signal-notifier

or use the source

$ git clone https://github.com/hadi2f244/django-signal-notifier
$ cd django-signal-notifier
$ python setup.py sdist
$ pip install dist/django-signal-notifier*

2. Add “django_signal_notifier” at the end of INSTALLED_APPS setting like this

INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
...
'django_signal_notifier',

]

4. Migrate

5. django-signal-notifier configure by admin panel by default(Can be configured by code, tough)

6. Use python manage.py migrate for schema migration.

Attention:

You may face with below error, To resolve it, ‘migrate’ first.

no such table: django_signal_notifier_trigger.
An error occurs when reconnecting trigger to the corresponding signals, Note:
→˓Make sure you migrate and migrations first

4 Chapter 1. Table of Contents

django-signal-notifier Documentation, Release 0.2.1

1.1.3 Usage

4. Run the development server and visit http://127.0.0.1:8000/admin/ To create a trigger(signal), back-
ends(messenger and message_template), and subscription (you’ll need the Admin app enabled).

5. You can test it like this: 5.1. Create a trigger (verb=pre_save and action_object=TestModel1)

5.2. Create a backend (messenger=SimplePrintMessengerTemplateBased and mes-
sage_template=SimplePrintMessageTemplate)

5.3. Create a subscription that connects the trigger and the backend. Add admin to the receiver(user) list.

5.4. Run this command in manage.py shell:

from django_signal_notifier.models import *
TestModel1_another_instance = TestModel1.objects.create(name="new_test_model2
→˓", extra_field="extra")

Now you should see a message when you create TestModel1. By Creating new TestModel1, Django calls
the pre_save signal’s send method. Then this signal call associated trigger handler. In the Trigger handler,
the associated backend is called. The message_template with some details are sent to the backend. In our
case, a simple message is printed. You can provide your messengers and message_templates.

1.2 Introduction

To understand how DSN works, We explain some main concepts at first.

1.2.1 Concepts

DSN has 3 main parts:

• Trigger Any Django’s signal can be connected to the corresponding trigger. There is a one-to-one connection
between each signal and each trigger.

Calling the signal’s Send method leads to calling the handler method of the corresponding trigger.

Trigger has 4 parts(We got the idea from Activity concept in a similar package named Django-activity-
stream):

– Verb. The verb phrase that identifies the action of the activity.

– Action Object. The object linked to the action itself.

– Actor Object. (Optional) The object that performes the activity.

– Target. (Optional) The object to which the activity was performed.

Example: A telegram client can be defined as a Backend for DSN. We can define a trigger that is connected
to post_save signal and one of the project models(Testmodel) set as the action_object. So when we
create new Testmodel, the handler of the corresponding trigger is called automatically (The new Testmodel
could be created by anyone and everywhere Because actor_object and target were left empty).

• Backend Backend is a tool to send a message like Notification, Email message, or So on that is the primary
goal of DSN. We’ve got this idea from django-sitemessage): Backend consists of two parts:

1. Message_template. It’s a class as a template of the message that contains template string or
points to a template file.

1.2. Introduction 5

http://127.0.0.1:8000/admin/
https://github.com/justquick/django-activity-stream
https://github.com/justquick/django-activity-stream
https://github.com/idlesign/django-sitemessage

django-signal-notifier Documentation, Release 0.2.1

2. Messenger. It’s the operational core of each backend that sends the string message (rendered mes-
sage_template). E.g., Telegram and email Client.

Example: A telegram client can be defined as a Backend for DSN.

• Subscription Triggers and Backends are connected in a subscription entity. Message receivers are set in
the subscription, too.

If the handler method of a trigger is called, the related subscriptions receivers and backends are invoked.
Then the backends(messenger) are called for each receiver(user). That’s the central part of DSN.

Example: Same as the above example, A trigger that is connected to the post_save for Testmodel is defined.
Also, we have connected a subscription that set email messenger as the backend and Admin user as the
receiver. Therefore, If a new Testmodel object is created, an email message is sent to the Admin.

Moreover, We can connect more than one subscription to a trigger. Subscriptions can be switched off.

Note: Receivers field are just provided in subscription for those situations that the receivers are static(e.g.,
sending some logs or notifications to Administrator user or group users). Besides, You can send the
message to dynamic users(that changed according to the occasions). For more details refer to Dynamic
User section.

1.2.2 Architecture

DSN’s architecture :

As stated above, DSN consists of 3 models(Trigger, Subscription, and Backend). DSN works as follow:

1. Setup and Initialization steps: 1.1. Custom messengers, message_templates, and signals must be de-
fined(Optional). It must be done through the code. 1.2. 3 steps must be done through the admin panel:

1.2.1. Triggers must be defined by the name of the pre-defined signal(verb_name).

1.2.2. Required backends must be defined by proper messenger and message_template.

1.2.3. Subscriptions are the relations between the Trigger and Backends. So, according to the
logic of our code, We must select proper backends for a trigger in a subscription.

6 Chapter 1. Table of Contents

django-signal-notifier Documentation, Release 0.2.1

2. Execution: The code of DSN starts when a signal triggers(The send function calling). 2.1. After the signal
triggers, the handler method of the associated trigger is called, and It’s check that passed signal arguments
match the associated trigger.

2.2. If everything matches, the associated subscription is evoked, Then a list of backends and receiver
users are created.

2.3. After that, each backend’s messengers are called for the specified message and the user. (Note: We
can set users dynamically. Hence associated user must be defined in the messenger, and the receiver field
in the subscription must be left empty)

1.2.3 Summary

In a nutshell, we can say DSN is developed to send message :

• When and Where ? : When a Trigger Triggered (The associated signal’s send function is called,
and the trigger’s specs match).

• What to send?: The message that is created to the message_template and other parameters like
signal_kwargs.

• Whom to send? : Send the message to the registered receivers in the subscription or the dynamic
user that can be specified in the messenger.

Note: It would be best if you took notice of these 3 questions When you want to assign a new trigger to a signal.

1.3 Setup

1.3.1 Requirements

• Python 2.7, 3.4, 3.5, 3.6, 3.7

• Django 1.7, 1.8, 1.9, 1.10, 1.11, 2.0, 2.1, 2.2, 3.0

Attention: django-signal-notifier==0.2.1 is not compatible with django>=3.1 . We are solving the problem.

1.3.2 Installation

1. Install django-signal-notifier by pip:

$ pip install django-signal-notifier

or use the source

$ git clone https://github.com/hadi2f244/django-signal-notifier
$ cd django-signal-notifier
$ python setup.py sdist
$ pip install dist/django-signal-notifier*

2. Add “django_signal_notifier” at the end of INSTALLED_APPS setting like this

1.3. Setup 7

django-signal-notifier Documentation, Release 0.2.1

INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
...
'django_signal_notifier',

]

3. django-signal-notifier configure by admin panel by default(Can be configured by code, tough)

4. Use python manage.py migrate for schema migration.

1.4 Usage

1.4.1 Initialization

As stated in Architecture Architecture part of Introduction, First You should implement a trigger regarding these
parameters:

• verb_name: equals to the signal’s name (required)

• action_object: An object or a class model that the signal operated on it. It is exactly equal to sender
parameter in signals. (It’s required for the pre-defined Django signals)

• actor_object: If you use a custom signal that you pass this parameter, you can use it (Optional)

• target: It’s just a simple string and used as a piece of side information. Same as actor_object, target is used
with a custom signal (Optional).

Then you can define some backend s. We have already defined some messengers and message_templates that are
initialized on DSN’s core by default. You can implement your messengers and message_templates. It’s explained in
Backends.

For connecting backend to the trigger, you must define at least one subscription and select the user and group that
must receive the message.

1.4.2 Custom Signal

In addition to django default signal(that we load all of them in DSN by default.), You can define your signal according
to the Django official documentation. It’s a standard way to define custom signals in the signals.py of each app.

custom_signal = Signal(providing_args=["parameter1"])

Then you must set up the custom signal in the ready function of the app’s config in apps.py:

class MyAppConfig(AppConfig):
name = 'myapp'
...
def ready(self):

from .signals import custom_signal
from django_signal_notifier.models import Trigger
...
Trigger.registered_verb_signal('custom_signal', custom_signal)

8 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/3.0/topics/signals/#defining-signals

django-signal-notifier Documentation, Release 0.2.1

Attention: Because apps.py runs in migration too. To avoid initialization problems You must import
django_signal_notifier and signals in ready function.

If you want to use actor_object or target, You must set them as the signal parameters. action_object is optional, but
it isn’t necessary to be defined as a parameter, You can set it as signal sender parameters(Refer to Django signal doc-
umentation, ` send method part <https://docs.djangoproject.com/en/3.0/topics/signals/#django.dispatch.Signal.send_
robust>`_)

Note: sender is necessary for all pre-defined Django’s signals. Therefore, DSN uses sender as action_object by
default.

Same as a standard Django signal, you can use send and send_robust to trigger the signal.

1.5 Backends

All backend consists of two parts, messenger and message_template. You can select them in the admin panel, but
if you need to define your messenger or message_template you must implement and add them to the messenger or
message_template list of DSN.

1.5.1 Custom Message_template

Each message_template is a class which inherits from BaseMessageTemplate class(###link to the class##). We
have to dissect BaseMessageTemplate and explain some details.

• file_name and template_string : Each message_template has a string template based on the Django
template language. It can be a simple string, Html, etc. You can set it directly by template_string vari-
able or set a file by file_name. At first, DSN checks file_name to get template string from it. Same as
each Django app, template files are in app_name/template/app_name. So that, you must define that
template file in the app that you defined new message_template class (You can refer to DSN_Notification
####links#### example for more details).

file_name = "app_name/my_template.html"

If file_name is left empty, template_string is set as the template string. There are no preferences between
these two ways. Use whatever you prefer.

An example:

template_string = """
{% if \"verb\" in context and context.verb != None %}

<div>
<p>{{ context.verb }}</p>

</div>
{% endif %} """

• render(self, user, trigger_context, signal_kwargs) : Messengers use this function to
render message_template by the passed context. A Context is a dictionary which consists of three parts:

– user: The User object that the message_template should render for that. We pass it to the mes-
sage_template to access the user’s name. (e.g., The user’s name can be set at the message header).

– trigger_context: It consists of four trigger’s parameters.

1.5. Backends 9

https://docs.djangoproject.com/en/3.0/topics/signals/#django.dispatch.Signal.send_robust
https://docs.djangoproject.com/en/3.0/topics/signals/#django.dispatch.Signal.send_robust
https://docs.djangoproject.com/en/3.0/ref/templates/language/
https://docs.djangoproject.com/en/3.0/ref/templates/language/

django-signal-notifier Documentation, Release 0.2.1

– signal_kwargs: Other signal arguments that are passed to DSN can be accessed from this.

Note: You shouldn’t change this function. We just explained this function to show how mes-
sage_template class works. If you want to add more variables to the context, you should override the
get_template_context function.

• get_template_context(self, context) : User, trigger_context and signal_kwargs are concate-
nated as context. You can set any new variables to context. For instance, you can add the sending time of
a message to the template context:

def get_template_context(self, context):
context['current_time'] = str(datetime.datetime.now().date())
return context

Note: Notice that it doesn’t call the superclass get_template_context method. So you should call parent’s
method manually in your code if you want:

def get_template_context(self, context):
context = super().get_template_context(context)

Your code :
...

Briefly, You must set a template string or template_file for the message_template by file_name
or template_string. To add more variables to the message context, You must overwrite
get_template_context function.

1.5.2 Custom Messenger

Like message_template, every messenger is a class that inherits from a base class named BaseMessenger (###link
to the class##). To define your messenger, You must redefine send() class method.

send(self, template, sender, users, trigger_context, signal_kwargs):

• template: This is the template object.

• users: List of users that you must send the message for them.

Some messengers can send user’s messages simultaneously to improve performance. Consequently, we avoid
calling send function for each user singly. Instead, we left it to the messenger to send messages to users.

• trigger_context: Same as message_template

• signal_kwargs: Same as message_template

Firstly you must render the template class by user, trigger_context, signal_kwargs. You can render every
user message by using a for loop over users list. Then you can send rendered string messages to the user. Example:

class simple_Messenger(BaseMessenger):
@classmethod
def send(self, template, users, trigger_context, signal_kwargs):

for user in users:
rendered_message = template.render(user=user, trigger_context=trigger_

→˓context, signal_kwargs=signal_kwargs)

(continues on next page)

10 Chapter 1. Table of Contents

django-signal-notifier Documentation, Release 0.2.1

(continued from previous page)

My_messenger.send_my_message(user_receiver=user, context=rendered_message)

Note: For more details how to define a new message_template and messenger, refer to DSN_Notification ###link
documentation.

1.5.3 Add message_template and messenger

We suggest defining your messengers and message_templates in a separate file. E.g., messengers.py or mes-
sage_template.py

You must introduce the new message_template and messenger to DSN. Use Add_Messenger and
Add_Message_Template functions to add new messenger and message_template, respectively. You must do
it in ready() function in apps.py of your app.

from django_signal_notifier.message_templates import Add_Message_Template
from django_signal_notifier.messengers import Add_Messenger

class MyAppConfig(AppConfig):
...

def ready(self):
from myapp.messengers import simple_Messenger
from myapp.message_templates import simple_Message_template

...

Messengers :
Add_Messenger(simple_Messenger)
Message templates :
Add_Message_Template(simple_Message_template)

Attention: Because of that apps.py runs in migration. To avoid initialization problems You should import your
messenger and message_template classes in ready() function.

After you re-run the app, you can see your messengers and message_templates are added to the messenger and mes-
sage_template lists, respectively.

1.6 Dynamic User

You can choose some users and groups as the receiver of the message in the subscription model. Although there
are many conditions that we want to set the receiver user dynamically. First, let’s take a look at a scenario. Then we
present the solution to the problem. Assume there are two models, Movie and User. We want to notify the audiences
(``user``s) of a movie when it releases.

class Movie(models.Model):
name = models.CharField(max_length=255)
audiences = models.ManyToManyField(blank=True, to=User)

1.6. Dynamic User 11

django-signal-notifier Documentation, Release 0.2.1

You probably defined a custom signal (e.g., notify_audiences) that you call it(send or send_rebust function) when you
want to notify the audiences. So we don’t discuss details of Trigger creation and the related process that occurs in
DSN anymore. (Refer to introduction).

The custom signal can be

notify_audiences = Signal(providing_args=["movie"])

movie parameter is used to pass the movie object.

To specify the dynamic user, A messenger must be designed as follows:

class Notify_audiences_messenger(BaseMessenger):
@classmethod
def send(self, template, users, trigger_context, signal_kwargs):

Ignore the messenger when movie was not specified.
We did it to avoid calling this messenger by other asymmetric signals other

→˓than notify_audiences
try:

movie = signal_kwargs['movie']
audiences = movie.audiences

except AttributeError:
logger.error("Specified signal and Notify_audiences_messenger as backend

→˓don't match together.")
return

for user in audiences:
message = template.render(user=user, trigger_context=trigger_context,

→˓signal_kwargs=signal_kwargs)

Send the rendered message to the user
...

As you see, the users argument(the set receivers in the subscription) is ignored, and a new user list is created. If you
want to send the message to the preset receivers too, you can combine users and audiences.

Note: user parameter that template is rendered by, must be the type of AUTH_USER_MODEL (Refer to settings)

1.7 Background Tasks

1.8 Settings

• AUTH_USER_MODEL : auth.User is used as default user model. It must be a string in the format of
‘app_name.user_model’

• PROFILE_MODEL : According to the Django documentation, there are some ways to extend user model.
But the simplest and extendable one is creating a user profile model that has a one-to-one connection
to the ‘auth.user’ model. We defined a profile model as follow, You can change it in the format of
‘app_name.user_model’.

class DSN_Profile(models.Model):
user = models.OneToOneField(to=app_settings.AUTH_USER_MODEL, on_delete=models.

→˓CASCADE)
telegram_chat_id = models.CharField(max_length=20, blank=True, null=True)

12 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/3.0/topics/signals/#sending-signals
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/

django-signal-notifier Documentation, Release 0.2.1

1.9 Comparison with similar projects

1.9. Comparison with similar projects 13

django-signal-notifier Documentation, Release 0.2.1

14 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

15

	Table of Contents
	Quick Start
	Introduction
	Setup
	Usage
	Backends
	Dynamic User
	Background Tasks
	Settings
	Comparison with similar projects

	Indices and tables

